Kirchhoff type elliptic equations with double criticality in Musielak–Sobolev spaces
نویسندگان
چکیده
This paper aims to establish the existence of a weak solution for non-local problem: \begin{equation*} \left\{\begin{array}{ll} -a\left(\int_{\Omega}\mathcal{H}(x,|\nabla u|)dx \right) \Delta_{\mathcal{H}}u &=f(x,u) \ \hbox{in} \Omega, \\ \hspace{3.3cm} u &= 0 \hbox{on} \partial \end{array}\right. \end{equation*} where $\Omega\subseteq \mathbb{R}^{N},\, N\geq 2$ is bounded and smooth domain containing two open connected subsets $\Omega_p$ $\Omega_N$ such that $ \bar{\Omega}_{p}\cap\bar{\Omega}_{N}=\emptyset$ $\Delta_{\mathcal{H}}u=\hbox{div}( h(x,|\nabla u|)\nabla u)$ $\mathcal{H}$-Laplace operator. We assume $\Delta_{\mathcal{H}}$ reduces \Delta_{p(x)}$ in $\Omega_{p}$ \Delta_{N}$ $\Omega_{N},$ non-linear function $f:\Omega\times\mathbb{R}\rightarrow \mathbb{R}$ act as $|t|^{p^{\ast}(x)-2}t$ on $e^{\alpha|t|^{N/(N-1)}}$ $\Omega_{N}$ sufficiently large $|t|$. To our results Musielak-Sobolev space, we use variational technique based mountain pass theorem.
منابع مشابه
On nonlocal elliptic system of $p$-Kirchhoff-type in $mathbb{R}^N$
Using Nehari manifold methods and Mountain pass theorem, the existence of nontrivial and radially symmetric solutions for a class of $p$-Kirchhoff-type system are established.
متن کاملSobolev Spaces and Elliptic Equations
Lipschitz domains. Our presentations here will almost exclusively be for bounded Lipschitz domains. Roughly speaking, a domain (a connected open set) Ω ⊂ R is called a Lipschitz domain if its boundary ∂Ω can be locally represented by Lipschitz continuous function; namely for any x ∈ ∂Ω, there exists a neighborhood of x, G ⊂ R, such that G ∩ ∂Ω is the graph of a Lipschitz continuous function und...
متن کاملPositive solutions for asymptotically periodic Kirchhoff-type equations with critical growth
In this paper, we consider the following Kirchhoff-type equations: $-left(a+bint_{mathbb{R}^{3}}|nabla u|^{2}right)Delta u+V(x) u=lambda$ $f(x,u)+u^{5}, quad mbox{in }mathbb{R}^{3},$ $u(x)>0, quad mbox{in }mathbb{R}^{3},$ $uin H^{1}(mathbb{R}^{3}) ,$ where $a,b>0$ are constants and $lambda$ is a positive parameter. The aim of this paper is to study the existence of positive ...
متن کاملOn an elliptic Kirchhoff-type problem depending on two parameters
Let Ω ⊂ R be a bounded domain with smooth boundary, and let K : [0,+∞[→ R be a given continuous function. If n ≥ 2, we denote by A the class of all Carathéodory functions φ : Ω×R → R such that sup (x,t)∈Ω×R |φ(x, t)| 1 + |t|q < +∞ , where 0 < q < n+2 n−2 if n > 2 and 0 < q < +∞ if n = 2. While, when n = 1, we denote by A the class of all Carathéodory functions φ : Ω ×R → R such that, for each r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Methods in The Applied Sciences
سال: 2023
ISSN: ['1099-1476', '0170-4214']
DOI: https://doi.org/10.1002/mma.8991